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A quasi-linear Schrödinger equation for large amplitude inertial oscillations in
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This paper derives a 2D, quasi-linear Schrödinger equation in Lagrangian coordinates that describes the
effects of weak pressure gradients on large amplitude inertial oscillations in a rotating shallow fluid. The
coefficients of the equation are singular at values of the gradient of the wave amplitude that correspond to
the vanishing of the Jacobian of the transformation from Lagrangian to Eulerian coordinates, but solutions
do not appear to form singularities dynamically. Two regimes of high and moderate nonlinearity are
identified, depending on whether or not phase differences in the components of the amplitude gradient
are required to maintain a non-zero Jacobian. Numerical simulations show that moderately nonlinear
solutions of the quasi-linear Schrödinger equation behave in a qualitatively similar way to solutions of a
linear Schrödinger equation, whereas highly nonlinear solutions generate rapidly oscillating, small-scale
waves.
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1. Introduction

We consider the non-dimensionalized rotation-dominated shallow water equations

ut + uux + vuy − v + εhx = 0,

vt + uvx + vvy + u + εhy = 0,

ht + uhx + vhy + h(ux + vy) = 0,

(1.1)

where (x, y) are spatial, or Eulerian, coordinates, (u, v) are the (x, y) velocity components of the fluid
and h is the depth. The small dimensionless parameter ε is given by

ε = gH

f 2L2
,

where g is the acceleration due to gravity, f is the Coriolis parameter, H is a typical depth of the fluid,
and L is a typical horizontal length scale of the fluid motion. Equivalently,

ε =
(

Ro

Fr

)2

,
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where the Rossby number Ro and the Froude number Fr are given in terms of a typical fluid veloc-
ity U by

Ro = U

fL
, Fr = U√

gH
.

Thus, ε � 1 when Ro � Fr and rotation dominates gravity.
The solutions we consider here are close to large-amplitude inertial oscillations, in which the

dominant balance is between inertia �ut + �u · ∇�u and the Coriolis force �ez × �u. This differs from quasi-
geostrophic solutions, in which the dominant balance is between the Coriolis force and the pressure
gradient, and from the geostrophic adjustment of initially non-geostrophic solutions by means of inertia-
gravity waves whose frequencies may differ substantially from the Coriolis frequency.

Liu & Tadmor (2004) observed that (1.1) has large-amplitude, time-periodic solutions. When ε = 0,
these solutions consist of spatially decoupled inertial oscillations at the Coriolis frequency, here non-
dimensionalized to one. Cheng & Tadmor (2008) proved that when the Coriolis force dominates pres-
sure, smooth solutions have a longer lifespan than they would in the absence of rotation. In particular,
they showed that smooth solutions of (1.1) close to the time-periodic solutions found in Liu & Tadmor
(2004) have an enhanced life-span when ε is small.

In this paper, we derive an asymptotic equation which describes the evolution of such solutions over
a long time-scale of the order ε−1. The main idea is to carry out the analysis in material, or Lagrangian,
coordinates where, in the absence of pressure gradients, fluid particles undergo independent harmonic
inertial oscillations.

Let (α, β) denote appropriate material coordinates and τ = εt a ‘slow’ time. We show that (1.1) has
asymptotic solutions of the form

u = A(α, β, τ) e−it + c.c. + O(ε), v = −iA(α, β, τ) e−it + c.c. + O(ε),

where the complex amplitude A(α, β, τ) satisfies

2iAτ + ∂

∂α

[
Aα − 2Aβ(AαA∗

β − A∗
αAβ)

(1 − 4[|Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2])3/2

]

+ ∂

∂β

[
Aβ + 2Aα(AαA∗

β − A∗
αAβ)

(1 − 4[|Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2])3/2

]
= 0. (1.2)

This equation is a 2D, quasi-linear Schrödinger equation for A with coefficients depending on ∇A. For
1D solutions independent of β, it reduces to

2iAτ +
[

Aα

(1 − 4|Aα|2)3/2

]
α

= 0. (1.3)

The local well-posedness of quasi-linear Schrödinger equations is analysed in Kenig et al. (2004) and
Marzuola et al. (2012), but we do not know of any previous derivation of a fully quasi-linear equation
of this form in a physical problem. For example, quasi-linear Schrödinger equations for spin waves
(Bass & Nasanov, 1990) have second-order terms roughly of the form ΔA + AΔ|A|2, but in that case
the coefficients of ΔA and ΔA∗ depend on A rather than ∇A.

Equation (1.2) describes the slow evolution of the inertial oscillations of different fluid particles as
a result of their interaction through weak pressure gradients. We refer to wave motions, such as this
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one, whose unperturbed or linearized behaviour consists of spatially uncoupled oscillations with the
same frequency as ‘constant-frequency waves’. Some general features of constant-frequency waves are
discussed in Biello & Hunter (2010).

A significant feature of (1.2) is that its coefficients become singular if ∇A = (Aα , Aβ) is sufficiently
large. Introducing the real quantity

ρ = |Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2, (1.4)

we see that the coefficients in (1.2) become infinite as ρ → 1
4 . As we will show in Section 3, this limit

corresponds to the vanishing of the Jacobian of the transformation from material to spatial coordinates,
and the condition 0 � ρ < 1

4 means that the Lagrangian to Eulerian map is smoothly invertible and
positively oriented. We conjecture that this condition is preserved by the evolution of (1.2) for suitable
smooth solutions, but do not attempt to prove it here. In all of our numerical solutions, we found that ρ

remained strictly less than 1
4 .

The condition 0 � ρ < 1
4 motivates a distinction between two regimes for (1.2) which we refer to

as ‘moderate’ and ‘high’ nonlinearity. It follows from (1.4) that ρ � |∇A|2. Thus, if |∇A|2 < 1
4 , then

ρ < 1
4 independently of the phases of Aα and Aβ . We call this the moderately nonlinear regime. If

1
4 < |∇A|2 < 1

2 and |Aα|2, |Aβ |2 < 1
4 , it is still possible to have ρ < 1

4 provided that Aα and Aβ are out
of phase by an angle that is sufficiently close to π/2. We call this the highly nonlinear regime. Numer-
ical simulations of (1.2) indicate that moderately nonlinear solutions behave like solutions of a linear
Schrödinger equation, whereas highly nonlinear solutions develop rapid, small-scale oscillations.

An outline of the contents of the rest of this paper is as follows. In Section 2, we write out the
Lagrangian formulation of the rotating shallow water equations. In Section 3, we derive the asymptotic
equation (1.2). In Section 4, we show that (1.2) is Hamiltonian, and introduce a convenient general-
ization of the equation, given in (4.4). In Section 5, we derive an ellipticity condition for (4.4) that is
required for local well-posedness and verify that it is satisfied by (1.2) when ρ < 1

4 . We also describe
the regimes of moderate and high nonlinearity for (1.2). In Section 6, we consider harmonic, travelling
wave solutions of (1.2) and show that they are linearly and modulationally stable. In Section 7, we
present some numerical solutions of (1.2), and in Section 8, we summarize our conclusions and open
questions.

2. Lagrangian description

In this section we rewrite the rotating shallow water system of equations in material coordinates for
use in the subsequent asymptotic analysis. Let (α, β) denote material coordinates and x = x(α, β, t),
y = y(α, β, t) a deformation. In material coordinates, the system (1.1) becomes

ut − v + ε
∂(h, y)

∂(α, β)
J−1 = 0, vt + u + ε

∂(x, h)

∂(α, β)
J−1 = 0, xt = u, yt = v, (hJ)t = 0, (2.1)

where the t-derivative is a material time derivative taken holding (α, β) fixed, and

J = xαyβ − xβyα ,
∂(h, y)

∂(α, β)
= hαyβ − hβyα ,

∂(x, h)

∂(α, β)
= xαhβ − xβhα . (2.2)
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By relabelling material particles if necessary, we may assume that hJ = 1. Then (2.1) becomes

ut − v + εh
∂(h, y)

∂(α, β)
= 0, vt + u + εh

∂(x, h)

∂(α, β)
= 0, xt = u, yt = v, h = 1

J
. (2.3)

We can eliminate (u, v) from (2.3) to get a system for (x, y) that is second order in time,

xtt − yt + εh
∂(h, y)

∂(α, β)
= 0, ytt + xt + εh

∂(x, h)

∂(α, β)
= 0, h = 1

J
,

but it is more convenient for the asymptotic expansion to leave (u, v) as dependent variables.

3. Asymptotic expansion

Using the method of multiple scales, we introduce a ‘slow’ time variable τ = εt and look for an asymp-
totic solution of the rotation-dominated Lagrangian shallow water equations (2.3) of the form

u = u0(α, β, t, τ) + εu1(α, β, t, τ) + O(ε2),

v = v0(α, β, t, τ) + εv1(α, β, t, τ) + O(ε2),

x = x0(α, β, t, τ) + εx1(α, β, t, τ) + O(ε2),

y = y0(α, β, t, τ) + εy1(α, β, t, τ) + O(ε2),

h = h0(α, β, t, τ) + O(ε),

(3.1)

where un, vn, xn, yn and hn are periodic functions of t. We use (3.1) in (2.3), expand time derivatives,
and equate coefficients of powers of ε. At the order ε0, we find that

u0t − v0 = 0, v0t + u0 = 0, x0t = u0, y0t = v0, (3.2)

and at the order ε, we find that

u1t − v1 + u0τ + h0

[
∂(h, y)

∂(α, β)

]
0

= 0,

v1t + u1 + v0τ + h0

[
∂(x, h)

∂(α, β)

]
0

= 0.

(3.3)

We consider solutions for which the deformation reduces to the identity in the absence of a wave, in
which case the solution of (3.2) is

u0(α, β, t, τ) = A(α, β, τ) e−it + A∗(α, β, τ) eit,

v0(α, β, t, τ) = −iA(α, β, τ) e−it + iA∗(α, β, τ) eit,

x0(α, β, t, τ) = α + iA(α, β, τ) e−it − iA∗(α, β, τ) eit,

y0(α, β, t, τ) = β + A(α, β, τ) e−it + A∗(α, β, τ) eit,

(3.4)

 at 07988000 on N
ovem

ber 22, 2013
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/
http://imamat.oxfordjournals.org/


INERTIAL OSCILLATIONS IN A ROTATING SHALLOW FLUID 5 of 20

where A is an arbitrary complex-valued function. The corresponding Jacobian

J0 = x0αy0β − x0βy0α

and height h0 are given by

J0 = M e−it + N + M ∗ eit, h0 = 1

J0
,

M = iAα + Aβ , N = 1 + 2i(AαA∗
β − A∗

αAβ).
(3.5)

The solvability condition for the system

u1t − v1 + F0 = 0, v1t + u1 + G0 = 0

to have a solution (u1, v1) that is 2π -periodic in t is

1

2π

∫ 2π

0
eit(F0 + iG0) dt = 0.

Imposing this condition on (3.3) and using (3.4) in the result, we find that

2Aτ + 1

2π

∫ 2π

0
h0 eit

{[
∂(h, y)

∂(α, β)

]
0

, +i

[
∂(x, h)

∂(α, β)

]
0

}
dt = 0, (3.6)

where the zero subscript denotes evaluation at the order zero terms.
Using (2.2) and (3.1), we may write the integrand in (3.6) as

h0 eit

{[
∂(h, y)

∂(α, β)

]
0

+ i

[
∂(x, h)

∂(α, β)

]
0

}
= 1

2

∂

∂α
{h2

0(e
it + 2Aβ)} + 1

2

∂

∂β
{h2

0(i eit − 2Aα)}.

The use of this expression in (3.6) gives

2Aτ + 1

2

[
∂

∂α
(P + 2AβQ) + ∂

∂β
(iP − 2AαQ)

]
= 0, (3.7)

where

P = 1

2π

∫ 2π

0
h2

0 eit dt, Q = 1

2π

∫ 2π

0
h2

0 dt. (3.8)

We evaluate these integrals by the method of residues. First, we consider P. Using (3.5) in (3.8), we
get that

P = 1

2π

∫ 2π

0

eit dt

(M e−it + N + M ∗ eit)2
. (3.9)

We make the change of variables z = eit and write

M

z
+ N + M ∗z = M ∗

z
(z − z1)(z − z2),
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where z1 + z2 = −N/M ∗ and z1z2 = M/M ∗. Then (3.9) becomes

P = 1

2π i(M ∗)2

∮
|z|=1

z2

[(z − z1)(z − z2)]2
dz. (3.10)

The roots z1 and z2 are given explicitly by

z1 =
−1 − 2i(AαA∗

β − A∗
αAβ) +

√
1 − 4[|Aα|2 + |Aβ |2 + (AαA∗

β − A∗
αAβ)2]

2A∗
β − 2iA∗

α

and

z2 =
−1 − 2i(AαA∗

β − A∗
αAβ) −

√
1 − 4[|Aα|2 + |Aβ |2 + (AαA∗

β − A∗
αAβ)2]

2A∗
β − 2iA∗

α

,

respectively.
We assume that the discriminant beneath the square root is positive, meaning that

ρ = |Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2 <
1

4
. (3.11)

It follows from (3.5) that
N − 2|M | � J0 � N + 2|M |

over a period in t and
N2 − 4|M |2 = 1 − 4ρ.

Thus, (3.11) corresponds to the condition that the Jacobian J0 does not vanish over a period in t.
When (3.11) holds, we have |z1| < 1 and |z2| > 1. The integrand in (3.10) then has a pole of order 2

at z1 inside the unit circle with residue

Res

{
z2

[(z − z1)(z − z2)]2
; z = z1

}
= 2z1z2

(z2 − z1)3
.

Hence, by the residue theorem,

P = 2z1z2

(M ∗)2(z2 − z1)3

= −2(iAα + Aβ)

(1 − 4[|Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2])3/2
. (3.12)

Similarly, we find that

Q = 1

2π i(M ∗)2

∮
|z|=1

z

[(z − z1)(z − z2)]2
dz

= z1 + z2

(M ∗)2(z2 − z1)3

= 1 + 2i(AαA∗
β − A∗

αAβ)

(1 − 4[|Aα|2 + |Aβ |2 + (AαA∗
β − A∗

αAβ)2])3/2
. (3.13)

Using (3.12–3.13) in (3.7) and multiplying the result by i, we find that A satisfies (1.2).
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4. Hamiltonian structure

The quasi-linear Schrödinger equation (1.2) derived in Section 3 is Hamiltonian and has the complex
canonical form

iAτ = δH
δA∗ , (4.1)

where the Hamiltonian H is given by

H(A, A∗) =
∫

1

4
√

1 − 4[AαA∗
α + AβA∗

β + (AαA∗
β − A∗

αAβ)2]
dα dβ. (4.2)

One can verify that this Hamiltonian corresponds to the Hamiltonian of the original rotating shallow
water equations.

The energy density in (4.2) becomes infinite as ρ → 1
4 , where ρ is defined in (1.4), as one would

expect when an area element in material coordinates is compressed to zero in spatial coordinates. This
singularity suggests that conservation of energy provides a mechanism for keeping ρ strictly less than
1
4 . On its own, however, conservation of the integral quantity in (4.2) is not sufficient to imply that ρ is
bounded pointwise away from 1

4 , and it is an open question to prove that ρ remains strictly less than 1
4

under the evolution of (4.1).
More generally, we consider an equation of the form (4.1) with Hamiltonian

H(A, A∗) =
∫

F(AαA∗
α + AβA∗

β − [i(AαA∗
β − A∗

αAβ)]2) dα dβ, (4.3)

where F : I → R is a smooth, real-valued function defined on an interval I ⊂ R. Hamilton’s equation is
then

iAτ + ∂

∂α
[f (ρ)(Aα + 2iDAβ)] + ∂

∂β
[f (ρ)(Aβ − 2iDAα)] = 0, (4.4)

where f = F ′, with a prime denoting the derivative with respect to ρ, and

D = i(AαA∗
β − A∗

αAβ), ρ = |Aα|2 + |Aβ |2 − D2. (4.5)

For (1.2), we have

F(ρ) = 1

4
√

1 − 4ρ
, f (ρ) = 1

2(1 − 4ρ)3/2
. (4.6)

Equation (4.4) is invariant under rotations of (α, β) since both |Aα|2 + |Aβ |2 and D2 are rotationally
invariant scalars. For inertial oscillations, this rotational invariance is inherited from the original equa-
tions, while the reality of ρ and D corresponds to the invariance of the equations under a phase shift of
the oscillations.
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In addition to conserving the Hamiltonian H, (4.4) conserves the action S, momentum �P and angular
momentum M, which are given by Sulem & Sulem (1999)

S =
∫

|A|2 dα dβ,

�P = i
∫

(A∇A∗ − A∗∇A) dα dβ,

M= i
∫

{α(AA∗
β − A∗Aβ) − β(AA∗

α − A∗Aα)} dα dβ.

5. Ellipticity condition

In this section, we derive an ellipticity condition for (4.4), which is a necessary condition for the equation
to be locally well-posed, and show that it is satisfied by (1.2). We do not prove a well-posedness result
here, but we discuss the solution regimes of moderate and high nonlinearity for (1.2) that are suggested
by this condition.

Expanding derivatives, we may write (4.4) as a quasi-linear Schrödinger equation

iAτ + N[A] = 0, (5.1)

where N is a second-order, quasi-linear operator without lower-order terms of the form

N[A] = aAαα + bAαβ + cAββ + λA∗
αα + μA∗

αβ + νA∗
ββ . (5.2)

The real-valued coefficients a, b and c and complex-valued coefficients λ, μ and ν are functions of ∇A
and ∇A∗; they are given explicitly by

a = [f (ρ) − 2D2f ′(ρ)](1 − 2|Aβ |2) + f ′(ρ)|Aα|2,

b = {2[f (ρ) − 2D2f ′(ρ)] + f ′(ρ)}(AαA∗
β + A∗

αAβ),

c = [f (ρ) − 2D2f ′(ρ)](1 − 2|Aα|2) + f ′(ρ)|Aβ |2,

λ = 2[f (ρ) − 2D2f ′(ρ)]A2
β + f ′(ρ)[A2

α + 4iDAαAβ],

μ = −4[f (ρ) − 2D2f ′(ρ)]AαAβ + 2f ′(ρ)[AαAβ − 2iD(A2
α − A2

β)],

ν = 2[f (ρ) − 2D2f ′(ρ)]A2
α + f ′(ρ)[A2

β − 4iDAαAβ],

(5.3)

where ρ and D are defined in (4.5).
The local linearized dispersion relation of (5.1–5.2) is obtained by ‘freezing’ coefficients in N and

looking for Fourier solutions of the resulting equation of the form

A(α, β, τ) = A0 ei(ξα+ηβ−γ τ) + B0 e−i(ξα+ηβ−γ τ).

After some algebra, we find that the dispersion relation is

γ 2 = σN (ξ , η), (5.4)
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where

σN (ξ , η) = [a2 − |λ|2]ξ 4 + [2ab − (λμ∗ + λ∗μ)]ξ 3η

+ [2ac + b2 − (λν∗ + λ∗ν + |μ|2)]ξ 2η2

+ [2bc − (μν∗ + μ∗ν)]ξη3 + [c2 − |ν|2]η4. (5.5)

If (5.1–5.2) is to be locally well-posed in an appropriate Sobolev space, the ‘frozen’ equation
cannot have growing Fourier modes, since then the homogeneity of σN would imply that there are
high-wavenumber modes with arbitrarily large growth rates. Neglecting degenerate cases in which σN

vanishes at a non-zero wavenumber, we see that for well-posedness N must satisfy the following ellip-
ticity condition:

σN (ξ , η) � σ0(ξ
2 + η2)2 for some σ0 > 0 and all (ξ , η) ∈ R

2. (5.6)

In other words, σN must be positive-definite. A further ‘non-trapping’ condition for the bi-characteristics
of N is needed for a proof of local well-posedness (Kenig et al., 2004; Linares & Ponce, 2009), but we
do not investigate that condition here.

Before giving criteria for the ellipticity condition (5.6) to hold, we obtain some inequalities for the
possible values of ρ and D, and identify the physically relevant regime in the case of the quasi-linear
Schrödinger equation for inertial oscillations.

From (4.5), we have D2 � 4|Aα|2|Aβ |2 and

1 − 4ρ � (1 − 4|Aα|2)(1 − 4|Aβ |2). (5.7)

For inertial oscillations, the inequality 1 − 4ρ > 0 corresponds to the condition in (3.11) for the Jacobian
J0 of the deformation to be non-zero throughout a period, and if ρ = 1

4 then J0 vanishes at some phase
of the oscillation. If 1 − 4ρ > 0 is to be feasible, then from (5.7) we must have either |Aα|2, |Aβ |2 < 1

4
or |Aα|2, |Aβ |2 > 1

4 . We exclude the second case, since it would require that Aα and Aβ are uniformly
bounded away from zero if ρ is not to pass through 1

4 , and therefore assume that |Aα|2, |Aβ |2 < 1
4 . In that

case, if ρ < 1
4 , then J0 > 0 is strictly positive throughout an inertial oscillation. Moreover, we have

ρ � |Aα|2 + |Aβ |2 − 4|Aα|2|Aβ |2 = 4|Aα|2|Aβ |2 + |Aα|2(1 − 4|Aβ |2) + |Aβ |2(1 − 4|Aα|2)
� 4|Aα|2|Aβ |2 � D2.

Thus, the physically relevant regime is

|Aα|2, |Aβ |2 <
1

4
, D2 � ρ <

1

4
. (5.8)

From (4.6), the asymptotic Hamiltonian density F(ρ) with respect to material coordinates for inertial
oscillations becomes infinite in the limit ρ → 1

4 of a vanishing Jacobian. In fact, as the next result shows,
even if the coefficient function F(ρ) is smooth and well-defined for ρ � 1

4 the condition ρ < 1
4 is needed

to ensure the well-posedness of (4.4).
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Proposition 5.1 Let σN be given by (5.5) where the coefficients are defined in (5.3) and ρ, D are
defined in (4.5). Assume that

|Aα|2 <
1

4
and |Aβ |2 <

1

4
. (5.9)

Then the ellipticity condition (5.6) holds if and only if

ρ <
1

4
, (5.10)

f 2 + (ρ − D2)ff ′ > 0, (5.11)

f 2 + 2(ρ − D2)ff ′ + (1 − 4ρ)D2(f ′)2 > 0, (5.12)

where f and f ′ are evaluated at ρ. A sufficient condition for (5.6) to hold under the assumption (5.9) is
that ρ < 1

4 and ff ′ > 0.

Proof. Using (5.3) in (5.5), we find after some algebra that the fourth-degree polynomial σN may be
factored into quadratic polynomials as

σN (ξ , η) = f (pξ 2 + 2f ′Wξη + qη2)(nξ 2 + 4Wξη + mη2), (5.13)

where

p = f + 2(|Aα|2 − D2)f ′, q = f + 2(|Aβ |2 − D2)f ′,

m = 1 − 4|Aα|2, n = 1 − 4|Aβ |2, W = AαA∗
β + A∗

αAβ .
(5.14)

The second factor on the right-hand side of (5.13) is independent of f and arises from our assumption
that the Hamiltonian density depends only ∇A only through ρ.

The polynomial σN is definite if and only if each of its factors is definite. The factor nξ 2 + 4Wξη +
mη2 is definite if and only if

mn > 4W 2, (5.15)

and since m, n > 0 from (5.14) and (5.9), it is then positive-definite. Writing

W 2 = 4|Aα|2|Aβ |2 − D2

and using (4.5), (5.14), we find that (5.15) is equivalent to (5.10).
We remark that if one of |Aα|2, |Aβ |2 is less than 1

4 and the other is greater than 1
4 , then m, n have

opposite signs; so σN is not definite and the ellipticity condition always fails. In that case, however, we
necessarily have ρ > 1

4 .
The remaining factor pξ 2 + 2f ′Wξη + qη2 is definite if and only if

pq > (f ′W)2.

Using (4.5) and (5.14), we find that this condition is equivalent to (5.12). The factor is positive-definite
if and only if fp and fq are positive. Since they have the same sign when (5.12) holds, this is the case
if and only if fp + fq > 0, which is equivalent to (5.11). This proves that (5.10–5.12) are necessary and
sufficient conditions for (5.6) to hold under the assumption (5.9).

If ρ < 1
4 and (5.9) holds, then from (5.8) the coefficients ρ − D2 and 1 − 4ρ in (5.11–5.12) are

non-negative, and a sufficient condition for these inequalities to hold is that ff ′ > 0. �
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If f > 0, as we may assume without loss of generality, then the sufficient condition f ′ = F ′′ > 0 is
a convexity condition on the Hamiltonian (4.3). For the rotating shallow-water Schrödinger equation,
where f is given by (4.6), we have f , f ′ > 0 so (5.6) is satisfied whenever ρ < 1

4 .
This analysis suggests a distinction between two regimes, a moderately nonlinear regime in which

nonlinear effects are not too strong, and a highly nonlinear regime in which nonlinear effects are very
strong:

(1) Moderate nonlinearity: |Aα|2 + |Aβ |2 < 1
4 , in which case the ellipticity condition ρ < 1

4 holds
independently of the relative phases of Aα and Aβ ;

(2) High nonlinearity: |Aα|2 + |Aβ |2 > 1
4 and |Aα|2, |Aβ |2 < 1

4 , in which case the phase difference
between Aα and Aβ has to be sufficiently close to π/2 to ensure that ρ < 1

4 .

In the 1D case, all solutions are moderately nonlinear, but 2D solutions may be highly nonlinear.
For example, consider an amplitude function of the form:

A(α, β) = u(α) + iv(β).

Then AαA∗
β is purely imaginary, and we have ρ = u2

α + v2
β − 4u2

αv2
β . Thus, the moderately nonlinear

regime corresponds to

u2
α + v2

β <
1

4
, (5.16)

while the highly nonlinear regime corresponds to

1

4
< u2

α + v2
β <

1

2
, max{u2

α , v2
β} <

1

4
. (5.17)

We show some numerical solutions of (1.2) with this type of initial data in Section 7 (cf. (7.4)).

6. Stability of periodic waves

In this section, we consider periodic travelling wave solutions of (4.4) and show that they are stable.
Equation (4.4) has the harmonic solutions

A = A0 ei�k·�α−iωτ , ω = f (ρ0)|�k|2, ρ0 = |�k|2|A0|2, (6.1)

where �α = (α, β) is the space variable, �k = (k, �) is a constant real wavenumber vector and A0 is a
constant complex amplitude. For the rotating shallow-water equations, these solutions correspond to
long-wavelength inertia-gravity waves. We will show that these solutions are both linearly and modula-
tionally stable. Thus, the nonlinearity in (4.4) is defocusing.

6.1 Linearized stability

Since (4.4) is rotationally invariant, there is no loss of generality in assuming that �k = (k, 0) in the
unperturbed periodic wave (6.1). To determine the linearized stability of the solution (6.1), we use

A(α, β, τ) = A0 eikα−iωτ [1 + B(α, β, τ)]
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in (4.4) and linearize the resulting equation with respect to B. This gives

iBτ + ωB + (f0 + ρ0f ′
0)(Bαα + 2ikBα − k2B)

− ρ0f ′
0(B

∗
αα + k2B∗) + (1 − 2ρ0)f0Bββ − 2ρ0f0B∗

ββ = 0, (6.2)

where
ρ0 = k2|A0|2, f0 = f (ρ0), f ′

0 = f ′(ρ0).

Writing
B(α, β, τ) = u(α, β, τ) + iv(α, β, τ),

equating real and imaginary parts, and using the equation ω = f0k2, we obtain

uτ + 2k(f0 + ρ0f ′
0)uα + (f0 + 2ρ0f ′

0)vαα + f0vββ = 0,

vτ + 2k(f0 + ρ0f ′
0)vα − f0uαα − (1 − 4ρ0)f0uββ + 2k2ρ0f ′

0u = 0.
(6.3)

Looking for Fourier solutions

u = û eiξα+iηβ−iγ τ + c.c., v = v̂ eiξα+iηβ−iγ τ + c.c.

we find that the dispersion relation of (6.3) is

[γ − 2(f0 + ρ0f ′
0)ξ ]2 = [(f0 + 2ρ0f ′

0)ξ
2 + f0η

2][f0ξ
2 + (1 − 4ρ0)f0η

2 + 2k2ρ0f ′
0]. (6.4)

Thus, the periodic waves are linearly stable to both longitudinal and transverse perturbations if
0 < ρ0 < 1

4 and f0f ′
0 > 0, which is the case for the rotating shallow-water waves.

In the high-frequency limit ξ , η → ∞, when γ = O(ξ 2) and (k, �, ω) is negligible compared with
(ξ , η, γ ), the relation (6.4) becomes

γ 2 = [(f0 + 2ρ0f ′
0)ξ

2 + f0η
2][f0ξ

2 + (1 − 4ρ0)f0η
2].

This result is consistent with the high-frequency, ‘frozen-coefficient’ dispersion relation (5.4) and (5.13),
since for the unperturbed solution A = A0 eikα−iωτ we have from (5.14) that

p = f0 + 2ρ0f ′
0, q = f0, m = 1 − 4ρ0, n = 1, W = 0.

6.2 Modulational stability

Next, we use Whitham’s (1974) averaged Lagrangian method to derive modulation equations for locally
periodic solutions of (4.4). The same results can be derived by the method of multiple scales.

We consider large-amplitude, slowly modulated asymptotic solutions of (4.4) of the form

A(�α, τ) = a(�α, τ) eiS(�α,τ), (6.5)

where a is a real-valued amplitude function and S is a real-valued phase. We let

ω = −Sτ , �k = ∇S

denote the local frequency and wavenumber vector.
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INERTIAL OSCILLATIONS IN A ROTATING SHALLOW FLUID 13 of 20

The Lagrangian for (4.4) is

L(A, A∗) =
∫ {

1

2
i(A∗Aτ − AA∗

τ ) − F(AαA∗
α + AβA∗

β − [i(AαA∗
β − A∗

αAβ)]2)

}
d�α dτ ,

where F ′ = f , and the variational principle is

δL
δA∗ = 0.

The averaged Lagrangian L̄ is obtained by setting

A = a eiS , Aτ = −iωa eiS , ∇A = ia�k eiS

in the full Lagrangian. (The phase S cancels, so it is not necessary to average the result over S.) This
gives

L̄(ω, �k, a) =
∫

L̄(ω, �k, a) d�α dτ , L̄(ω, �k, a) = ωa2 − F(|�k|2a2). (6.6)

The term D = i(AαA∗
β − A∗

αAβ) reduces to zero in this approximation and therefore does not affect the
modulation equations.

The averaged Lagrangian equations are obtained from (6.6) by varying the amplitude a and the
phase S, which gives

L̄a = 0,
∂L̄ω

∂τ
− ∇ · L̄�k = 0,

∂�k
∂τ

+ ∇ω = 0.

The equation L̄a = 0 is the nonlinear dispersion relation

ω = |�k|2f (|�k|2a2). (6.7)

The remaining equations are

∂

∂τ
(a2) + ∇ · [2a2f (|�k|2a2)�k] = 0,

∂�k
∂τ

+ ∇[|�k|2f (|�k|2a2)] = 0.

Introducing

ρ = |�k|2a2, (6.8)

we may write these equations as

ρτ + ∇ · [2ρf (ρ)�k] + 2ρ�k · ∇f (ρ) = 0, �kτ + ∇[|�k|2f (ρ)] = 0. (6.9)

Freezing coefficients and looking for Fourier solutions proportional ei�ξ ·�α−iγ τ , we find that the character-
istic variety of (6.9) for gradient wavenumber vectors �k = ∇S is given by

[γ − 2(f + ρf ′)(�k · �ξ)]2 = 2ρf ′{f [|�k|2|�ξ |2 − (�k · �ξ)2] + (f + 2ρf ′)(�k · �ξ)2}.
This result agrees with the long-wave approximation (ξ , η) → 0 of (6.4). It follows that if f and f ′ are
positive then γ is real for all real �ξ , meaning that (6.9) is hyperbolic in ρ > 0. This is the case when f is
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given by (4.6), so the locally periodic solutions (6.5) are modulationally stable for the rotating shallow
water equations. We remark that from (6.7) and (6.8)

∇�kω(�k; a) = 2(f + ρf ′)�k,

so the characteristic velocities of the modulation equations split into two branches centred around an
advection at the ‘linear’ group velocity ∇�kω.

7. Numerical solutions

In this section, we show some numerical solutions of the Schrödinger equations (1.2) and (1.3). In
particular, we illustrate the different behaviour of moderately and highly nonlinear solutions in two
space dimensions.

First, we consider the 1D quasi-linear Schrödinger equation for A(α, τ),

iAτ +
[

Aα

2(1 − 4|Aα|2)3/2

]
α

= 0, (7.1)

with 2π -spatially periodic boundary conditions and initial data

A(α, 0) = 0.15 exp[−8(α − π/2)2] for 0 < α < 2π . (7.2)

These data correspond to a periodic array of gaussian pulses with initially constant phase. In one space
dimension, the solution is necessarily in the moderately nonlinear regime.

The coefficient of Aα in the spatial dispersive term in (7.1) changes by a factor of (1 − 4ρ)−3/2

from its value at A = 0, where ρ = |Aα|2, and this factor gives an indication of the strength of the
nonlinearity. The maximum value of ρ for the initial data (7.2) is approximately equal to 0.132, which
gives a maximum value of the dispersion factor of (1 − 4ρ)−3/2 ≈ 3.10.

Figure 1 shows a numerical solution of (7.1–7.2), computed by a pseudo-spectral method with 213

Fourier modes and a fourth-order Runge–Kutta method in time with a fixed time step. For comparison,
we show the solution of a linear Schrödinger equation with the same initial data in Fig. 2 for longer
times. Despite the fact that the initial data are not small, the solutions have a similar structure; the
main difference is the faster dispersion of the pulse for the nonlinear equation as a result of its larger
dispersion coefficient at higher amplitudes. In addition, we see the generation of some small, fast, high-
wavenumber modes in the nonlinear solution. Numerical simulations of the 1D Schrödinger equation
with other initial data gave similar results.

Next, we consider a localized 2D solution with initial data

A(α, β, 0) = 20 exp(−8[(α − π)2 + (β − π)2])[(α − π) + i(β − π)]7 (7.3)

for 0 < α < 2π , 0 < β < 2π . These initial data are a pulse centred at (π , π) with amplitude proportional
to r7 e−8r2

and phase equal to 7θ . For these data, we have

max(|Aα|2 + |Aβ |2) = 0.1387, max[i(AαA∗
β − A∗

αAβ)]2 = 0.0060, max ρ = 0.1363,

where ρ is defined in (1.4). Fig. 3 shows a numerical solution of (1.2) for A(α, β, τ) at τ = 0.05 with
initial data (7.3) and 2π -periodic boundary conditions in α and β. The solution is computed by the use
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Fig. 1. Surface plot of Re A(α, τ) for the solution of (7.1) with initial data (7.2) for times 0 �τ �0.1.
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R
e 

A

Fig. 2. Surface plot of Re A(α, τ) for the solution of the linear Schrödinger equation iAτ + ( 1
2 )Aαα = 0 with the same initial data

(7.2) as in Fig. 1 for times 0 �τ �0.3.

of a pseudo-spectral method with 512 × 512 Fourier modes and a fourth order, fixed-step Runge–Kutta
method in time.

For comparison, we show the solution of a linear Schrödinger equation with the same initial data
at a later time in Fig. 4. As in the previous 1D example, the solutions have a very similar structure,
with the generation of small, high wavenumber modes ahead of the pulse in the nonlinear equation.
Other numerical experiments with different localized initial data also show a surprising small influence
of nonlinearity on solutions of (1.2) beyond an enhanced rate of dispersion. One reason appears to be
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Fig. 3. A surface plot of Re A(α, β, τ) for the solution of (1.2) at time τ = 0.05 with initial data (7.3).

Fig. 4. A surface plot of Re A(α, β, τ) for the solution of the linear Schrödinger equation iAτ + ( 1
2 )(Aαα + Aββ) = 0 at τ = 0.10

with the same initial data (7.3) as in Fig. 4.

that spatial dispersion causes the derivatives of the solution to decrease rapidly in time, after which the
behaviour of the solution is essential linear.

Finally, we show two spatially periodic solutions of (1.2) with initial data of the form

A(α, β, 0) = a0(cos α + i cos β). (7.4)

If a2
0 < 1

8 these data are in the moderately nonlinear regime (5.16) for all (α, β), while if 1
8 < a2

0 < 1
4

these data are in the highly nonlinear regime (5.17) when |∇A|2 is near its maximum value.
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Fig. 5. A contour plot of |Aα |2 + |Aβ |2 for the solution of (1.2) at time τ = 0.1 with initial data (7.4) where a2
0 = 1

9 .
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Fig. 6. A contour plot of i(AαA∗
β − A∗

αAβ) for the solution of (1.2) at time τ = 0.1 with initial data (7.4) where a2
0 = 1

9 .

Figures 5–6 show contour plots of the derivatives of the solution of (1.2) at τ = 0.1 with 2π -periodic
boundary conditions in α and β and initial data (7.4) for a moderately nonlinear case a2

0 = 1
9 . In Fig. 5,

we plot |∇A|2, and in Fig. 6, we plot D = i(AαA∗
β − A∗

αAβ). The solution is computed by a pseudo-
spectral method with 1024 × 1024 Fourier modes and a fourth-order, fixed-step Runge–Kutta method
in time. The maximum value of ρ for these initial data are ρ ≈ 0.173, leading to a maximum value
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Fig. 7. A contour plot of |Aα |2 + |Aβ |2 for the solution of (1.2) at time τ = 0.005 with initial data (7.4) where a2
0 = 1
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Fig. 8. A contour plot of i(AαA∗
β − A∗

αAβ) for the solution of (1.2) at time τ = 0.005 with initial data (7.4) where a2
0 = 1

5 .

of (1 − 4ρ)−3/2 ≈ 5.83 for the dispersion factor. The solution remains relatively smooth, although it
develops sharp transitions in D at α = π and β = π , which become sharper with further evolution in
time.

Next, in Figs 7–8, we show the corresponding contour plots of the solution of (1.2) at τ = 0.005
with initial data (7.4) for a highly nonlinear case a2

0 = 1
5 . This problem is stiff, with a dispersion factor
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Fig. 9. A contour plot of ρ, defined in (1.4), for the solution of (1.2) at time τ = 0.005 with initial data (7.4) where a2
0 = 1

5 .

(1 − 4ρ)−3/2 that varies initially from 1 to 125. As shown in Fig. 9, the condition ρ < 1
4 continues

to hold everywhere in our numerical solution, but the behaviour of the highly nonlinear solution is
qualitatively different from that of the previous moderately nonlinear solution. We see the generation
of small-scale waves at the ‘corners’ of the square-shaped level curves of |∇A|. The amplitude of these
waves does not grow. At later times, they propagate into the low dispersion regions where |∇A| is close
to zero; they remain trapped in these regions, and exhibit a kind of ‘phase turbulence’ which requires
further study.

8. Conclusions

We have derived a fully quasi-linear, 2D Schrödinger equation that gives an asymptotic description
in Lagrangian coordinates of large amplitude inertial oscillations and long inertia-gravity waves in a
rotation-dominated shallow fluid. The coefficients of the equation become singular at values of the
velocity gradient that correspond to a loss of smooth invertibility in the Lagrangian to Eulerian map.

We have verified that the equation satisfies an ellipticity condition required for local well-posedness,
and distinguished two regimes of high and moderate nonlinearity depending on whether or not phase
differences in the components of the velocity gradient are required to avoid a singularity. We do not
observe the spontaneous formation of singularities in numerical solutions, but rigorous proofs of the
non-occurrence of singularities and the local, or global, well-posed of the Schrödinger equation are
open questions.

Periodic travelling wave solutions of the Schrödinger equation are linearly and modulationally sta-
ble, so nonlinearity does not appear to focus waves. In numerical simulations, the qualitative behaviour
of moderately nonlinear solutions is remarkably similar to that of solutions of a linear Schrödinger
equation, but for highly nonlinear solutions, we observe the generation of small-scale waves from low-
wavenumber initial data. The evolution of the resulting small-scale wave patterns over longer times is
complicated and requires further study.
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